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Abstract
Stateless model checking (SMC) software implementations requires exploring both concurrency-
and data nondeterminism. Unfortunately, most SMC algorithms focus on efficient exploration of
concurrency nondeterminism, thereby neglecting an important source of bugs.

We present ConDpor, an SMC algorithm for unmodified Java programs that combines optimal
dynamic partial order reduction (DPOR) for concurrency nondeterminism, with concolic execution
for data nondeterminism. ConDpor is sound, complete, optimal, and parametric w.r.t. the memory
consistency model. Our experiments confirm that ConDpor is exponentially faster than DPOR
with small-domain enumeration. Overall, ConDpor opens the door for efficient exploration of
concurrent programs with data nondeterminism.
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1 Introduction

Systematic state space exploration for concurrent software involves exploring both concurrency
nondeterminism and data nondeterminism. Concurrency nondeterminism arises out of the
possible orders in which threads or processes can be scheduled or messages delivered; data
nondeterminism arises out of the possible values that variables may take. Both sources are
important in finding bugs.

There are orthogonal techniques to handle each source in the context of dynamic (or
stateless) model checking. Dynamic partial order reduction (DPOR) [29, 30, 6, 48, 45]
handles concurrency nondeterminism efficiently by maintaining scheduling constraints along
an execution, and exploring distinct schedules if and only if the corresponding constraints lead
to non-equivalent executions. Modern DPOR tools explore the concurrency space optimally
[6, 45] and also account for errors caused by compiler/CPU reorderings [8, 5, 48, 56].

Symbolic execution handles data nondeterminism by maintaining symbolic constraints on
data along an execution, and exploring distinct execution paths if and only if the symbolic
constraints along these paths are mutually disjoint. Tools based on dynamic symbolic
execution (also called concolic testing, CT) [31, 61, 19, 23], maintain the symbolic constraints
dynamically, and efficiently manage the backtracking symbolic search.
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26:2 Optimal Concolic Dynamic Partial Order Reduction

Despite their many individual successes, few tools handle both concurrency and data
nondeterminism simultaneously and optimally. Current approaches ignore either partial
orderings [59, 19, 23] or data nondeterminism [55, 6, 56, 40, 45] or optimality [58, 60].

In this paper, we present ConDpor, a systematic exploration algorithm that combines
DPOR with CT. ConDpor does so by maintaining symbolic constraints in the trace
constructed by a DPOR algorithm (specifically, TruSt [45]), and backtracking both on
scheduling constraints and on symbolic constraints.

But why tackle both issues at the same time in the first place? At a first glance, data- and
concurrency bugs seem orthogonal, as many concurrent programs are otherwise deterministic.
However, popular concurrent data structures argue otherwise: algorithms like timestamped
stack [26] or elimination-backoff stack [37] use timestamps or random identifiers to achieve
better efficiency, and thus fundamentally require reasoning about both concurrency- and
data nondeterminism. Moreover, concurrency APIs also often require supporting data
nondeterminism, as their primitives may fail with multiple error values, each one leading to
a different control-flow path. In a nutshell, handling concurrency and data together amplifies
stateless model checking to unbounded state spaces.

An interesting aspect of ConDpor lies in how symbolic constraints are generated and
manipulated in the context of DPOR. Indeed, as we later show, ConDpor only needs to
know when symbolic values are generated, and when symbolic constraints are evaluated.
As such, instead of using a dedicated runtime to manipulate the symbolic path constraint
according to the executed instructions, ConDpor offloads the manipulation of symbolic
expressions to the underlying programming language (similarly to [20, 63, 60]). Specifically,
ConDpor provides dedicated datatypes for symbolic types (available to users) that “carry”
the symbolic path constraint of the execution. Arithmetic operations on symbolic variables
manipulate the path constraint before performing the respective operation, while logical
operations record an event in the current trace at which ConDpor can later backtrack.

ConDpor is sound (i.e., explores no false positives), complete (i.e., explores all program
behaviors), optimal (i.e., does not explore traces that only differ in the execution of DPOR-
independent instructions or in the model satisfying the symbolic constraints), and parametric
in the choice of the memory model (i.e., can find bugs due to compiler/CPU reorderings). As
our implementation of ConDpor for concurrent Java programs demonstrates, ConDpor
is also efficient: its overhead over standard DPOR is proportional to the amount of data
nondeterminism in a given program, and ConDpor is able to fully explore challenging
concurrent data structures within seconds.

In summary, we make the following contributions.

We present ConDpor, a combination of optimal DPOR and concolic execution, and
prove it sound, complete, and optimal.
We implement ConDpor in a tool for programs running on the JVM.
We empirically show that ConDpor can systematically explore concurrent programs
involving both data and concurrency nondeterminism efficiently, with only a small memory
overhead.

2 Overview

In this section, we provide a motivating example, followed by an informal description of
ConDpor, along with some algorithmic and engineering challenges we faced.
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2.1 A Motivating Example
We motivate ConDpor using timestamped stack [26], a high-performance data structure
where each thread maintains a portion of the stack. When a thread pushes an element, it
adds it to a thread-local stack and marks it with a timestamp (e.g., by calling a hardware
timer). When a thread pops an element, it goes over the top elements of all stacks, and
returns the one with the largest timestamp.

Suppose we want to verify a client that makes n concurrent pushes to the stack and then
pops an element:(

push(1) push(2) ... push(n)
)

; pop() (npush+pop)

Enumerative approaches like DPOR would use a shared atomic counter to model times-
tamps: each call that gets a timestamp will atomically fetch-and-increment the counter.
These shared access to the counter make pure DPOR explore n! orderings among the pushes.

Instead, a symbolic approach like CT would construct a symbolic counter value for each
thread, only constraining that symbolic values in the same thread are linearly ordered. As
the pop() operation compares timestamps to find the largest one, a pure concolic approach
would first serialize the pushes and then solve the symbolic constraints to find which push
had the largest timestamp, leading to n! · 2n−1 executions.

ConDpor combines both DPOR and CT: while it does use a symbolic counter for
each thread, ConDpor also leverages DPOR and does not order the pushes, thereby only
exploring 2n−1 executions (corresponding to solving the symbolic constraints). In fact, if
each thread pushed k times the difference becomes even more prominent: ConDpor would
still consider 2n−1 executions, whereas DPOR would explore (kn)!/(k!)n.

While this example shows a “best case”— we have assumed no further contention — our
experiments confirm that ConDpor does outperform purely enumerative approaches for
many benchmarks (see §6).

2.2 Making Optimal DPOR Concolic
Let us now describe ConDpor. The core of ConDpor is a backtracking search over program
events that explores all executions of a given program (up to equivalence). ConDpor explores
exactly one execution from each equivalence class, and initiates no redundant explorations.

2.2.1 Equivalence Partitioning
Our notion of equivalence is a symbolic version of DPOR’s underlying equivalence parti-
tioning.1 For example, assuming an underlying reads-from equivalence partitioning [22],
ConDpor considers two interleavings equivalent if the reads obtain their values from the
same writes, and every symbolic value satisfies the same constraints. As an example, consider
the program below2 where nondet() is a source of symbolic values (e.g., program input):

x := 1 y := nondet() assert(y = 42) b := x (w+sw+r+r)

Naively, this program has 36 behaviors. There are 4! = 24 ways the accesses to x and y can
be interleaved. For half of those, the read of y reads 0, whereas for the other half it reads
the written symbolic value, which is evaluated in the assertion and may or may not be 42.

1 ConDpor extends TruSt [45], which supports both Mazurkiewicz [54] and reads-from equivalence [22].
2 We use x, y, z for shared variables (initialized to 0), and a, b, ... for thread-local variables.

CONCUR 2025
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1 init

W(x, 1) A(s)

W(y, s)

R(y) R(x)
po rf 2 init
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W(y, s)

R(y)

C(s = 42)

R(x)

3 init
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4 init
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5 init
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C(s = 42)

R(x)

6 init

W(x, 1) A(s)

W(y, s)

R(y)

C(s ̸= 42)

R(x)

Figure 1 The six execution graphs of w+sw+r+r model its equivalence classes

Observe, however, that the ordering between the writes to x and y does not matter, as
these are different memory locations. As such, it suffices to only consider 6 equivalence
classes: two cases for the read of x, and for each of them, one case where the read of y reads
0, and two cases where the read of y reads the written symbolic value (which may or may
not be 42).

Formally, the equivalence classes of a given program are represented as a set of execution
graphs [45]. In each of these graphs, the nodes (events) correspond to instructions of the
program, while the edges denote various relations between the instructions. Examples of
events are reads and writes to shared variables, while examples of relations include the
program order, po, which orders the instructions of a given thread, and reads-from, rf, which
connects a read to the write from which it obtains its value.

For ConDpor, we extend events to also include the generation of symbolic values and
the evaluation of symbolic constraints. For instance, the execution graphs for w+sw+r+r
can be seen in Fig. 1. In these graphs, the initializer event init models the initialization
writes of all memory location (and is po-ordered before the first event of each thread), while
R, W, A and C denote reads, writes, symbolic-value generation and constraint evaluation,
respectively. Using these new events means that we can now check for satisfiability of all
constraints simply by taking the conjunction of all constraint-evaluation events.

Execution graphs have to satisfy certain consistency constraints imposed by the underlying
memory model. For example, under sequential consistency [51], given a program where
thread I writes two variables (x := 1; y := 1) and thread II reads them in the opposite order
(a := y; b := x), thread II cannot read a = 1 ∧ b = 0. Other models (known as weak memory
models) allow this outcome, which may arise due to compiler and/or CPU optimizations.

Although below we assume sequential consistency to ease the presentation, ConDpor is
parametric in the choice of the memory consistency model (see §3).

2.2.2 Enumerating Execution Graphs

Given the representation above, we can verify a concurrent program by enumerating all of its
execution graphs. ConDpor does so in a depth-first manner: starting from the empty graph,
it extends it one event at a time (maintaining consistency), recording alternative exploration
options when possible. When a read is added to the graph, ConDpor explores all writes
the read can (consistently) read from, and sets its rf accordingly. When a write is added,
ConDpor checks to see whether any of the previously added reads can be (consistently)
revisited to read from the newly added write. Finally, when a constraint-evaluation event is
added, ConDpor examines all both outcomes, assuming both are satisfiable.
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A(s)

C(s = 42)
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Figure 2 A ConDpor exploration

▶ Example 1. Let us demonstrate how ConDpor works with an example.

a := x

b := nondet()
assert(a = 0 ∨ b ̸= 42)

x := 1 (rs+w)

In the program above, an error manifests if thread I both reads 1 for x, and nondet() returns
the unexpected value 42. ConDpor’s exploration for rs+w is depicted in Fig. 2.

At the first step, ConDpor adds R(x) to the graph; this read can only read 0, as there
is only one write to x in the current graph (the init event). When ConDpor encounters
nondet(), it adds an A(s) label to the graph. This label is used to keep track of the domain
of the symbolic value (see §3), and also to inform the SMT solver of the new variable.

When ConDpor reaches the assert statement, while the value of a is already known, the
result of b ̸= 42 is not. As such, ConDpor examines both options: in graph B , we assume
that b = 42 (since the SMT solver returns a satisfying assignment for s = 42), while in graph
C we assume that b ̸= 42 (again, the SMT solver is queried3 for the satisfiability of s ̸= 42).

In graphs B and C , ConDpor subsequently encounters the statement x := 1. Merely
adding the respective write event to the graph, however, is inadequate, as ConDpor also has
to explore the case where thread I reads from this write. As such, ConDpor also examines
whether W(x, 1) can revisit any of the existing same-location reads in the graph.

Revisiting complicates the exploration, as ConDpor has to restrict graphs resulting from
revisits in order to ensure consistency. Indeed, in our example above ConDpor removes
all (po ∪ rf)+-successors of R(x) in the resulting graph D , as the existence of these events
might be (control-flow) dependent on the read value.

Also observe that we need to maintain optimality: each execution graph should be
explored exactly once. In the exploration above, if we are not careful and revisit R(x) from
both B and C , we will get graph D twice, leading to duplication. ConDpor ensures R(x)
is only revisited in exploration B .

3 As in concolic execution, one of these two calls can be spared; see §4.

CONCUR 2025
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Optimality

ConDpor ensures optimality by extending the notion of maximal extensions [45] from
existing graph-based DPOR algorithms so that it accounts for constraint evaluation events.
The key idea behind maximal extensions is roughly that if performing the same revisit in two
graphs G1 and G2 leads to the same graph, then G1 and G2 only differ in the events deleted
by the revisit. In the example above, graphs B and C differ in their constraint evaluation
event. In turn, by imposing a criterion on the events deleted by the revisit—that they must
be maximally added—we can perform this in only one of the possible sub-explorations.

We defer the presentation of our maximal-extension definition to §4, where we also show
how they can be efficiently computed.

2.3 Engineering Challenges
ConDpor works for any programming language, assuming that concurrency primitives (e.g.,
shared-memory reads and writes) can be intercepted, and that symbolic expressions can be
manipulated along program execution (e.g., with a symbolic interpreter).

2.3.1 Intercepting Concurrency Primitives in the JVM
DPOR implementations intercept concurrency primitives through system call interception
[55], through a custom runtime [48, 35], or through mocking concurrency libraries [64, 27].

Unfortunately, neither technique is appropriate for the JVM: distinguishing system calls
from the program under test from system calls made by the JVM itself is difficult, writing
and maintaining a custom runtime for Java is a multi-person-year effort, and mocking is
inapplicable because some concurrency primitives are handled natively within the JVM.

Our solution is to instrument the program through bytecode rewriting using the ASM
library [1], and to provide our own asynchronous runtime for concurrency operations. Our
instrumentation provides additional synchronization “under the hood” yielding the scheduler
full control over Java’s concurrency constructs.

2.3.2 Symbolic Execution without an Interpreter
As with concurrency primitives, manipulating symbolic expressions typically requires a custom
interpreter for the instructions (e.g., [19], [15]). Sometimes, the interpreter instructions are
instrumented into the code so that the symbolic interpretation occurs as the program runs.

While we do perform bytecode rewriting, the cost of developing a full symbolic interpreter
for the JVM is quite high, and the interpreter has to understand and differentiate between
the code under test and JVM’s own operations.

To overcome this issue, we use Java’s type system to push the symbolic interpretation
into the language itself. More specifically, in addition to all constructs made available to the
user by the language, ConDpor provides an API defining symbolic types (e.g., symbolic
integers). These types provide the same operations as their non-symbolic counterparts, but
also “carry” a symbolic expression that is being manipulated along with the respective values.

To manipulate symbolic values, the API provides the operations nondet() and evaluate(),
which create a symbolic value and evaluate a symbolic constraint, respectively. Note that the
purpose of evaluation is twofold: apart from allowing the result of a symbolic expression to
be used in non-symbolic contexts (e.g., in the condition of an if-statement), it also serves as a
backtracking point for ConDpor. Indeed, whenever evaluate() is encountered, the runtime
calls ConDpor-specific code to add an C event to the graph (see § 2.2). While having such
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an API means that users must use it to capture all sources of data nondeterminism, such a
constraint can be easily lifted (e.g., by means of a data-flow analysis over bytecode).

Crucially, our symbolic API remains a part of the program under test: it is implemented
fully in Java and requires no special runtime. Internally, our API calls ConDpor-specific
code only to register the generation/evaluation of a symbolic expression.

3 Partial Order Semantics

We now formally describe execution graphs, the data structure behind ConDpor’s partial
order semantics. We begin by defining events.

▶ Definition 2. An event, e ∈ Event, is either the initialization event init or a thread event
⟨t, i, lab⟩, where t ∈ Tid is a thread identifier, i ∈ Idx △= N an index within a thread, and
lab ∈ Lab a label that takes one of the following forms:

Write label, W(l, v), where l ∈ Loc is the location accessed and v ∈ Val is the value written.
Read label, R(l), where l ∈ Loc is the location accessed.
Symbolic generation label, A(s), where s ∈ Sexpr is the symbolic value generated.
Constraint evaluation label, C(ϕ), where ϕ ∈ Sexpr is a boolean symbolic expression.
Block label, B, denoting thread blockage (see below).
Error label, error, denoting a program error (see below).

We define the set of all read events as R ≜ {⟨t, i, lab⟩ | lab = R(_)}. Similarly, we denote
the set of all write, symbolic-generation, and constraint-evaluation events as W, A, and C,
respectively, and assume that init ∈ W.

Block and error labels are generated by assume and assert statements, respectively. An
assume(b) statement is modeled as if (!b) block(), while an assert(b) statement is modeled
as if (!b) error(). The block() and error() statements generate the respective labels,
while b ∈ Val is a boolean value.

Having defined events, we define execution graphs as follows.

▶ Definition 3. An execution graph G consists of:

(1) a set of events E that includes init and does not contain multiple events with the same
thread identifier and serial number;

(2) the reads-from function rf : E ∩ R → E ∩ W that maps each read to the same-location
write event from which it gets its value;

(3) the coherence order co ⊆
⋃

l∈Loc Wl × Wl (with Wl
△=

{
⟨t, i, lab⟩ ∈ W lab = W(l, _)

}
), a

strict partial order that is total on Wl for every location l ∈ Loc; and
(4) a total order ≤ on E, representing the order in which events were added to the graph.

We write G.E, G.rf, G.co, and ≤G to project the various components of an execution graph,
and use G|E to denote the restriction of an execution graph G to a set of events E. We
assume that init ∈ W, and use the functions tid, idx, loc, val and formula to get (when
applicable) the thread identifier, index, location, value and formula of an event, respectively.
We write G.Φ △=

∧
s∈G.C formula(s) for the conjunction of all symbolic constraints of the

graph, G.W for G.E ∩ W (and similarly for other sets), and use subscripts to further restrict
these sets (e.g., Wl

△=
{

w ∈ W loc(w) = l
}

). Finally, given two events e1, e2 ∈ G.E, we write
e1 <G e2 if e1 ≤G e2 and e1 ̸= e2.

CONCUR 2025
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As defined above, execution graphs do not have an explicit program order (po) component.
We thus induce po based on our event representation as follows:

po △=
{

⟨init, e⟩ e ∈ Event \ {init}
}

∪
{

⟨⟨t1, i1, lab1⟩, ⟨t2, i2, lab2⟩⟩ t1 = t2 ∧ i1 < i2
}

We write G.porf △= (po ∩ (G.E × G.E) ∪
{

⟨G.rf(r), r⟩ r ∈ G.R
}

)+ for the graph’s causal
dependency relation.

Finally, we define the semantics of a program P under a model M as the set of execution
graphs corresponding to P that satisfy M’s consistency predicate. In this paper, we assume a
memory model M providing a consistency predicate consistentM(G), determining whether a
graph G is consistent, as well as an error predicate IsErroneousM(G), determining whether
G contains an error (e.g., a data race) according to M. We further assume that consistentM(·)
is extensible, prefix-closed, and implies RMW atomicity and porf acyclicity (see [45]), and
that IsErroneousM(·) is monotone (if a prefix-closed subset of a graph G contains an error,
then so does G). Models satisfying these assumptions include SC [51], TSO [57] and RC11
[50] under shared-memory consistency, as well as asynchronous communication, peer-to-peer,
and mailbox under message-passing consistency [25].

Given such an underlying memory consistency model M, we then define a new memory
model MS , with consistentMS(G) △= consistentM(G) ∧ SAT(G.Φ) and IsErroneousMS

(G) △=
IsErroneousM(G), where SAT(·) is a predicate denoting whether a symbolic constraint is
satisfiable. Intuitively, MS extends the underlying communication semantics to also require
that all symbolic constraints in a graph are satisfiable. It is easy to show that MS satisfies
the memory-model properties stated above.

4 Algorithm

Let us now present ConDpor in detail (cf. Algorithm 1). Although our algorithm works
both under the Shasha-Snir and the reads-from equivalence partitioning, here we only provide
the (more straightforward) Shasha-Snir version [62], the generalization of Mazurkiewicz
equivalence partitioning for relaxed memory models such as TSO and PSO. Symbolic
reasoning does not affect the choice of partitioning, and the required changes can be adapted
from [45].

Given a program P, ConDpor explores all of its consistent execution graphs under
a model M by calling VisitP,MS

(G∅), where G∅ is the initial graph containing only the
initialization event init. In turn, Visit constructs the execution graphs of P one at a time
and incrementally, while also recording the event addition order in the graph’s ≤ component.

Let us now examine Visit more closely. As a first step, Visit checks whether G contains
an error (line 2); errors include safety violations (which manifest with an error label), as
well as memory-model-specific errors such as data races.

After ensuring that the graph is error-free, Visit extends the current graph with the next
program event (line 3) with the help of Add and next. next returns an event from a thread
that is not blocked or finished, and Add adds it to the graph in place, and then returns
the new event. If there are no events to add (in which case Add/next returns ⊥), a full
execution of P has been explored, and Visit returns (line 4).

If a is a read, we recursively explore all consistent rf options for it (line 7). (We assume
that SetRF(G, r, w) returns a new graph G′ that only differs from G in rf: G′.rf(r) = w.)

If a is a constraint-evaluation event, ConDpor has to examine whether the newly added
event (and its negation) renders G.Φ satisfiable. To do that, Visit calls VisitIfConsistent
twice: once with a’s constraint as is, and another time with a’s expression negated. In order
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Algorithm 1 ConDpor: Optimal Concolic Dynamic Partial Order Reduction
1: procedure VisitP,MS (G)
2: if IsErroneousMS (G) then exit(“Erroneous execution”)
3: a← Add(G, nextP(G))
4: if a = ⊥ then return “Visited full execution graph G”
5: switch a do
6: case a ∈ R
7: for w ∈ G.Wloc(a) do VisitIfConsistentP,MS (SetRF(G, a, w))
8: case a ∈ C
9: VisitIfConsistentP,MS (SetSYM(G, a, formula(a)))

10: VisitIfConsistentP,MS (SetSYM(G, a,¬formula(a)))
11: case a ∈ W
12: VisitCOsP,MS (G, a)
13: for r ∈ G.Ra such that ⟨r, a⟩ ̸∈ G.porf do
14: MaybeBackwardRevisitP,MS (G, r, a)
15: case _ VisitP,MS (G)

16: procedure VisitCOsP,MS (G, a)
17: for wp ∈ G.Wloc(a) do VisitIfConsistentP,MS (SetCO(G, wp, a))

18: procedure MaybeBackwardRevisitP(G, r, a)
19: Deleted← {e ∈ G.E | r <G e ∧ ⟨e, a⟩ ̸∈ G.porf}
20: [d1, ... , dn]← sort<G (Deleted)
21: if ∃G′, G′′ such that G′ r

⇝ G′′ d1⇝ · · · dn⇝ G|G.E\{a} then
22: VisitIfConsistentP,MS (SetRF(G|G.E\Deleted, r, a))

23: procedure VisitIfConsistentP,MS (G)
24: if consistentMS (G) then VisitP,MS (G)

to set a’s symbolic constraint, Visit employs the SetSYM(G, a, ϕ) function, which returns
a new graph G′ that is identical to G, apart from the constraint of event a, which is set
to ϕ. Observe that if G′.Φ is unsatisfiable, then the execution subsequently be dropped by
VisitIfConsistent as inconsistent.

If a is a write, ConDpor examines both the non-revisit- and the revisit case. In the
non-revisit case, ConDpor explores all consistent co options for a via VisitCOs (line 12).
Analogously to SetRF, SetCO(G, wp, w) returns a new graph G′ that only differs from G in
that the co-predecessor of w is wp.

In the revisit case, Visit examines previously-added reads as revisit candidates. Con-
cretely, Visit only revisits same-location reads that are not porf-before a (as revisiting
those would create porf cycles), assuming that the events deleted from the revisit have been
added maximally (lines 13-14). The maximal-addition definition closely follows the one of
Kokologiannakis et al. [46]: ConDpor backward-revisits r from a if all deleted events are
added co-maximally (if non-symbolic), or in a unique fashion (if symbolic). Formally, we
write G1

e
⇝ G2 if G2 = Add(G1, e) and:

G2.rf = G1.rf ∪ {⟨maxG1.coe , e⟩} G2.co = G1.co G2.Φ = G1.Φ if e ∈ R

G2.rf = G1.rf G2.co = G1.co ∪ (G1.We×{e}) G2.Φ = G1.Φ if e ∈ W

G2.rf = G1.rf G2.co = G1.co G2.Φ = ST(G1.Φ, e) if e ∈ C

G2.rf = G1.rf G2.co = G1.co G2.Φ = G1.Φ otherwise

Above, the ST(·) function acts as a tiebraker if both cases of a constraint-evaluation
event are feasible. If both formula(e) and ¬formula(e) are feasible, it (arbitrarily) returns
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G1.Φ ∧ formula(e), while if only formula(e) (resp. ¬formula(e)) is feasible, it returns
G1.Φ ∧ formula(e) (resp. G1.Φ ∧ ¬formula(e)).

4.1 Optimizing the Algorithm
Observe that Algorithm 1 performs a lot of redundant calls to the SMT solver. As one
example, checking graph consistency requires checking the satisfiability of G.Φ. However,
as G.Φ only changes when adding evaluation labels, it suffices to only call the solver in the
respective cases. As another example, observe that satisfiability is also necessary in the ST(·)
function, when checking for maximality of symbolic evaluation events. We can spare these
solver calls by leveraging concolic execution, as explained below.

Indeed, observe that Algorithm 1 does not immediately leverage concolic execution:
the SMT solver is called twice when adding a symbolic constraint (lines 9-10), as well as
to evaluate the maximality of constraint-evaluation events during backward revisits (ST(·)
function). As done in concolic execution, however, if we make our symbolic types “carry” a
model of each symbolic value along with the respective symbolic expression, one of these two
calls can be spared. Concretely, when adding a constraint-evaluation event, we can evaluate
the non-negated constraint (line 9) without resulting to an SMT solver (by using the model).

Backward revisits can also leverage concolic execution and spare SMT calls in the ST(·)
function, though with a bit more care. Assuming Gr is the graph resulting from the revisit,
we first check Gr’s consistency4 and obtain a model of all symbolic values in Gr. Then, we
iterate over the events in the deleted set (lines 19-20), and consider a constraint-evaluation
event a as maximal, if formula(a) is true in the model obtained in Gr. If that’s not the case,
then this means that ¬formula(a) is feasible, and hence that case is deemed as maximal.
(Any symbolic generation events encountered, simply extend the existing model.)

Note, however, that the above procedure requires the model that is returned by an SMT
solver for a given formula to be deterministic (which is the case with e.g., Z3). To see why,
consider the following program, where a symbolic value is shared between two threads:

a := nondet()
b := x assume(a > 42) if (a > 0) x := 1

There are two executions in which x := 1 can revisit b := x: one where thread II has a
C(a > 42) event (and the assume succeeds) and one where it has a C(a ≤ 42) event (and the
assume blocks). In both cases, the graph occurring if W(x, 1) revisits R(x) will contain R(x),
C(a > 0) and W(x, 1), while the deleted set will be C(a > 42) and C(a ≤ 42) respectively. If,
however, the model we obtain from the solver for C(a > 0) is a = 43 in the first case and
a = 1 in the second case, then the revisit will not occur, as each case would drop it, assuming
it would take place in the other one.

4.2 Soundness, Completeness and Optimality
Given a program P and a consistency model M that satisfies the conditions of §3, Algorithm 1
is sound (i.e., only explores consistent full executions), complete (i.e., explores all of P’s
consistent executions), and optimal (i.e., explores each consistent execution exactly once, and
does not engage in any wasteful explorations). The proofs follow by extending the framework
of [46] to account for symbolic event types.

Before formally stating our results, let us provide some definitions.

4 VisitIfConsistent in line 15 can reuse this result.
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We write JPKMS
for the set of consistent full graphs corresponding to the program P

under MS , and G1 ≈ G2 if G1 and G2 agree on all their components but ≤G.
Given graphs G1, G2, we say that G1 is a prefix of G2 (written G1 ⊑ G2), if there exists
a graph G′

1 ≈ G1 such that the algorithm can reach a graph G′
2 ≈ G2 from G′

1 in a series
of non-revisit steps.

Let us now state our results. Observe that ConDpor is trivially sound, as Algorithm 1
never visits inconsistent executions.

▶ Theorem 4 (Completeness). Let Gf be an execution graph in JPKM. Then VisitP,MS
(G∅)

calls VisitP,MS
(G′

f ) for some G′
f ≈ Gf .

▶ Theorem 5 (Optimality). VisitP,MS
(G∅) never calls VisitP,MS

(a) for graphs G1, G2 such that G1 ≈ G2, or
(b) for a graph G that cannot lead to a full execution Gf ∈ JPKMS

.

We prove both theorems by showing the exact (unique) sequence of steps that the
algorithm takes to reach a graph Gf , with Gf ≈ G′

f ∈ JPKMS
.

Given Gs ⊑ Gt, we define a procedure GetNext(Gs, Gt) that returns the (minimal,
unique and nonempty) sequence of algorithmic steps S with which Gs reaches a graph G

such that Gs ⊑ G ⊑ Gt, and with the property (proved by induction) that S does not
revisit events in Gs (it may revisit events not in Gs). Crucially, the inductive proof for
GetNext(Gs, Gt) relies on the ability to extend its first argument Gs, which is not affected
by our new symbolic events (MS is maximally extensible).

Calling GetNext in a fixpoint yields the desired result.

5 Implementation

We implemented ConDpor as a tool for concurrent Java programs5. Our tool supports
commonly used Java synchronization primitives such as locks, monitors, synchronized blocks,
as well as thread creation and joining.

ConDpor can operate in two modes: a verification mode, and a “random mode” in
which ConDpor samples executions from the program state space. The latter mode is useful
for finding bugs faster, as random sampling does not involve backtracking.

Verifying a program with ConDpor involves three steps: (1) compiling it into Java
bytecode, (2) instrumenting the bytecode so that we can intercept operations of interest, and
(3) running the instrumented bytecode under a special runtime that implements ConDpor
to systematically explore all program behaviors. Even though our algorithm is parametric in
the choice of the memory model, our implementation currently only works under SC [51].

To instrument the bytecode, we used the ASM library [1], and inserted yield calls to
ConDpor at points of interest. For example, whenever a thread acquires or releases
a lock, the instrumented bytecode yields control to ConDpor, which then updates the
execution graph and schedules threads appropriately. ConDpor controls thread scheduling
by employing a shared mutex between the native Java Thread and the scheduler thread. We
implement the yield method as Object.wait over this shared mutex, effectively imposing a
cooperative multithreading semantics on top of the Java runtime.

5 https://github.com/mpi-sws-rse/jmc
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To return appropriate values during constraint evaluation, ConDpor uses the JavaSMT
library [13] to query an SMT solver for satisfiability. Although JavaSMT can interface with
multiple solvers, we have only experimented with Z3 [3]. Similarly to TruSt [45], ConDpor
copies the graph whenever a write revisits a read, meaning that a new solver instance has to
be created as well. We found that creating new instances is expensive, and implemented a
shared solver pool with a fixed number of instantiated solvers to allow solver reuse. Each
solver instance also leverages incremental solving, which turned out to be very beneficial.

Finally, note that users must utilize our symbolic API to capture all sources of data
nondeterminism manually: in practice, this involves subclassing some input types to their
symbolic counterparts. Note that some existing symbolic (or concolic) execution engines, like
EXE [20], employ source-to-source translation, where the instrumentation is written in the
same programming language as the program under test. While a source-to-source translation
is also possible for Java, we decided to implement ConDpor using bytecode instrumentation
and by encoding symbolic objects directly in the language, so as to avoid maintaining a Java
compiler infrastructure.

6 Evaluation

We now proceed with ConDpor’s evaluation, which aims to answer the following questions:

§ 6.1 How does symbolic handling of data nondeterminism fare against an explicit one?
§ 6.2 Can ConDpor handle real-world programs that employ data nondeterminism?

To answer these questions, we conduct two case studies. To showcase the differences
between explicit and symbolic handling of data nondeterminism, we evaluate ConDpor on
a set of synthetic benchmarks designed to juxtapose the two approaches. To see how well
ConDpor scales in realistic code, we use a diverse set of concurrent data structures that rely
on randomness (modeled as data nondeterminism). In both studies, we compare ConDpor
against a baseline DPOR implementation ExEn that handles data nondeterminism explicitly
by exhaustively enumerating all possible values in the input domain, and repeatedly running
vanilla DPOR for each value. To ensure a fair comparison, we restrict the data domain to
{0, 1, 2}, making explicit enumeration feasible.

Our evaluation demonstrates that ConDpor’s handling of nondeterminism is exponen-
tially better than ExEn’s, and that ConDpor is able to completely explore clients of
data-nondeterministic concurrent data structures. Moreover, ConDpor’s overhead over
vanilla DPOR is proportional to the amount of data nondeterminism in the input program.

Experimental Setup

We conducted all experiments on a Dell Latitude 5450 system running a custom Debian-based
distribution with an Intel Core Ultra 5 135H CPU (18 cores @ 4.60 GHz) and 32GB of RAM.

In all tables, Execs denotes the number of executions explored, Time the required time
(in seconds), and Mem the required memory (in MB). We set a timeout of 210 minutes and
a memory limit of 512MB (denoted by � and OOM).

6.1 Explicit vs Symbolic Data Nondeterminism
Let us begin by comparing ConDpor to ExEn on synthetic benchmarks. For this part of
our evaluation, we used all benchmarks employing data nondeterminism from SV-COMP’s
pthread category [67], as well as two handcrafted ones. Our results can be seen in Table 1.
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ExEn ConDpor

Execs Time Mem Execs Time Mem

SVQueue1(8) 39 366 365 73 4 0 77
SVQueue1(9) 118 098 1743 73 4 0 71
SVQueue1(10) � � � 4 0 70

SVQueue2(2) 1242 5 79 138 1 70
SVQueue2(3) 92 556 398 108 3428 13 100
SVQueue2(4) � � � 86 708 530 118

SVQueue3(7) � � � 2865 27 100
SVQueue3(8) � � � 6506 70 130
SVQueue3(9) � � � 14 505 175 158

SVStack1(5) 183 222 1481 126 754 5 108
SVStack1(6) � � � 2770 26 131
SVStack1(7) � � � 10 294 112 148

SVStack2(6) � � � 1481 14 123
SVStack2(7) � � � 4876 54 153
SVStack2(8) � � � 16 422 213 172

Counter1(4) 11 988 32 70 2368 9 78
Counter1(5) 317 115 1044 100 41 760 217 90
Counter1(6) � � � 883 584 5540 200

Counter2(5) 66 465 215 180 5770 25 140
Counter2(6) 1 411 770 6368 200 69 852 403 155
Counter2(7) � � � 970 886 6929 220

Table 1 ConDpor performs better than ExEn even for small data domains

The main takeaway from this table is that, despite the small data domain, for each
benchmark there is an input parameter (the size of shared buffer in SV-COMP benchmarks
and the number of threads in the handcrafted ones) for which ExEn times out, whereas
ConDpor scales beyond it. Moreover the memory increase over ExEn (which consumes
polynomial memory) is negligible due to the tests having only a few constraints.

Let us now examine the benchmarks of Table 1 more carefully to gain a better un-
derstanding of the differences between the two approaches. Starting with SVQueue*(N)
and SVStack*(N), these benchmarks implement a simple data structure (queue and stack,
respectively) using an array of size N , while a producer and a consumer thread add/remove
N symbolic integers using a shared lock. (Queue/stack tests only differ in the way the
threads synchronize when modifying the data structure.) As can be seen, ExEn cannot
scale beyond very small arrays since, in addition to all possible schedules, it also explicitly
enumerates all values for each array cell. ConDpor, on the other hand, scales nicely even
for larger arrays, as it only examines whether a removed item matches a previously inserted
one. We can draw similar conclusions for the Counter*(N) benchmarks, where each of N

threads nondeterministically operates on one of two shared counters. Although there is a
single source of data nondeterminism in each thread, ExEn quickly times out for larger Ns.

6.2 Verifying Concurrent Data-Structures
Let us now move on to applying ConDpor to realistic concurrent data structures. We classify
these benchmarks into three categories, depending on their amount of data nondeterminism.

data-independent data structures (lock-based queue [38] and Afek-Gafni-Morrison Stack [10]).
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Figure 3 ConDpor adds no overhead over DPOR on data-independent tests (time/threads)

These do not perform any computation on the arguments of their methods.
data-dependent data structures (coarse-grained list [38], fine-grained list [14], optimistic
list [38] and lazy list [36]). These check equality or ordering of their method arguments.
nondeterminism-based data structures (timestamped stack [26] and elimination backoff
stack [37]). These are data-independent on their arguments, but internally rely on data
nondeterminism for improved performance.

We ran ConDpor on each category under two different workloads: a “100-0” workload,
where N threads are inserting a symbolic integer to the data structure, and a “50-50” workload
where

⌈
N
2

⌉
threads insert an item and

⌊
N
2

⌋
threads remove an item. (Tables including all

experimental results against ExEn can be found in §A.)

6.2.1 Data-Independent Data Structures
We begin by measuring ConDpor’s overhead over vanilla DPOR on some data-independent
data structures (cf. Fig. 3). As these data structures do not use the values of their arguments,
vanilla DPOR and ConDpor explore the same number of executions. What these benchmarks
demonstrate, however, is that manipulating symbolic integers in ConDpor does not induce
any overhead, as no calls to the SMT solver are performed thanks to concolic execution.
Indeed, ConDpor randomly concretizes all nondeterministic values, and never encounters
constraint evaluation nodes, allowing it to scale in exactly the same manner as vanilla
DPOR. (The small overhead of ConDpor for small input parameters is due to the solver
initialization; see §5.)

6.2.2 Data-dependent Data Structures
Data-dependent data structures, on the other hand, do incur some overhead over concurrency
nondeterminism. A comparison between ConDpor and ExEn on such structures can be
seen in Fig. 4. As expected, ConDpor scales better than ExEn in all benchmarks, and
often scales to more threads than ExEn (e.g., in Coarse List/DD/50-50).

What we also observe in these benchmarks, however, is that most time is not spent on
evaluating symbolic constraints, but rather on enumerating executions (see §A.3).

Indeed, taking Coarse List/DD/100 as an example, ConDpor spends considerably less
time evaluating constraints than enumerating executions: for 6 threads, only 12.5% of the
total time was spent on solving constraints [44], despite the fact that there are N ! ways the
symbolic constraints can be evaluated in each of the N ! concurrent behaviors. This is because
the time per execution is greater than the time required to solve a single constraint. We also
observe that ConDpor scales better for the “50-50” workload than “100-0” workload, as in
the former ConDpor does not have to evaluate constraints if the data structure is empty.
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Figure 4 ConDpor scales better than ExEn on data-dependent tests (time/threads)

6.2.3 Nondeterminism-based Data Structures
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Figure 5 ConDpor outperforms ExEn for data structures employing randomness (time/threads)

The last class of benchmarks discusses data structures that exploit nondeterminism at
the core of their operations. Such structures are interesting because although the data
domain might be small (e.g., if we use a small elimination array in an elimination structure),
ConDpor still provides significant benefits over ExEn or vanilla DPOR (assuming an
equivalent encoding is possible).

Similar to the data-dependent data structures, EBStack/ND/50-50, as depicted in Figure 5,
this confirms the scalability of ConDpor as the input parameter increases compared to
ExEn. For instance, in EBStack with an elimination array of size ⌈ N

2 ⌉ for “50-50” workload,
ExEn still enumerates all values in the data domain, even in the case where threads do not
touch the elimination array; by contrast, ConDpor does not evaluate any constraints.

Let us conclude by discussing TSStack in more detail, as this data structure was our
motivating example in §2. As discussed, this benchmark can be encoded both concretely
(using an atomic shared counter), as well as symbolically (using thread-local symbolic
counters). As such, we perform the comparison between ConDpor and vanilla DPOR.
Based on the TSStack/100-0 workload in Figure 6, ConDpor explores a single execution.
This is because ConDpor encodes timestamping symbolically, and hence push operations
are never ordered if there are no pop operations (see § 2.1). Vanilla DPOR, on the other
hand, eagerly explores all possible orderings for timestamps, thereby quickly timing out, as
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Figure 6 Vanilla DPOR quickly times out when the parameter of TSStack/100-0 is increased.
Also, ConDpor using symbolic encoding explores fewer executions than vanilla DPOR in both
workloads

depicted in Figure 6. Moreover, as the TSStack/50-50 workload demonstrates in Figure 6,
the symbolic encoding is superior, as ConDpor explores fewer executions than DPOR. This
would be even more pronounced using a workload similar to that of client npush+pop in
§ 2.1.

7 Related Work

As far as handling data nondeterminism is concerned, a lot of research has focused around
symbolic execution (e.g., [16, 68, 61]), which uses a symbolic interpreter to examine many
program paths at once [43]. As symbolic execution is a static technique and the number
of symbolic paths to explore explodes, recent work [31, 19, 32, 21, 53, 66] has focused on
dynamic symbolic execution (aka concolic testing), where certain symbolic variables are
concretized in order to reduce the state-space size. Despite their success, most symbolic tools
do not reason about concurrency and weak memory consistency.

For scheduling nondeterminism, most automated tools are based on either testing or
model checking. Testing tools (e.g., [41, 49, 52, 17, 2, 18, 71]) randomly sample the state
space of a program in order to detect concurrency bugs, but they do not provide completeness
guarantees, nor do they handle data-nondeterminism. Model checkers (e.g., [39, 35]), on the
other hand, do guarantee completeness, as they exhaustively enumerate the state space of a
program (up to a bound). In order not to store all the visited program states, model checking
is often done “on the fly” (a.k.a. stateless model checking) [55, 30], while also employing
partial order reduction [29, 7, 56, 45, 27, 47, 33, 4, 9]. While model checkers can handle data
nondeterminism explicitly, explicit enumeration quickly blows up the state space (see §6).

There has been work aiming to handle both scheduling and data nondeterminism (e.g.,
[28, 65, 70]), either by adding concurrency reasoning to concolic testing, or the other way
around. Con2Colic [28] extends CT by introducing interference scenarios to encode
the scheduling constraints that lead to new execution paths. Similarly, Guo et al. [34]
encode program assertions as symbolic constraints to develop sound methods that prune
out redundant executions. Tools like cmbc [24] encode the program into an SAT formula,
and offload all symbolic reasoning to an SMT solver. JPF has been extended to incorporate
symbolic execution [12]. None of these tools perform optimal partial order reduction for
general memory consistency models. Finally, there are several works that attempt to efficiently
combine DPOR with symbolically encoded partial-order constraints to reduce redundant
exploration (e.g., [11, 42]). Unlike our approach, however, these do not tackle the problem
of data nondeterminism within concurrent programs.

Another approach to addressing both scheduling and data non-determinism is maximal
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path causality (MPC) [69]. MPC uses a coarser equivalence partitioning than ConDpor, as it
packs all combinations of schedules and data that reach the same path into a single equivalence
class. Upon obtaining a random program interleaving, MPC collects constraints that would
lead to the exploration of an unseen path, and explores them by re-running the program.

a := nondet()
b := nondet()
if (a > 0) x := 1
else

if (b > 0) x := 3
else x := 4

assert(x ̸= 2)

Apart from not being able to handle weak memory
consistency models, MPC is not optimal w.r.t. its
partitioning. As an example, consider the program on
the right. Assuming MPC first obtains the interleav-
ing C(a > 0) · W(x, 1) · R(x), it will then generate the
constraint a ≤ 0 ∧ val(R(x)) = 2, aiming to uncover
the assertion violation. While this constraint (and all
paths stemming from it) are infeasible, MPC cannot drop it, as some of the paths under the
“else” branch could have been writing x := 2.

The closest works to ConDpor are those that aim to combine DPOR and CT. One of the
such attempts was jCUTE [60]. Unlike ConDpor, jCUTE uses a non-optimal DPOR (and
therefore explores redundant executions), and does not support weak memory consistency.
Another work is that of Schemmel et al. [58], who combine quasi-optimal partial order
reduction with CT. However, the resulting algorithm (PorSe) is not optimal, does not
support weak memory consistency, has exponential memory requirements, and, since it
does not use concrete execution, incurs a costly and unnecessary extra query to the SMT
solver upon each symbol constraint evaluation. In §A.5, we present a comparison between
ConDpor and PorSe using the SV-COMP benchmarks. This comparison shows that, on
average, ConDpor reduces the number of explored executions by 72% compared to PorSe
across SV-COMP benchmarks.

8 Conclusion

We presented ConDpor, a sound, complete and optimal algorithm that integrates concolic
execution into dynamic partial order reduction. ConDpor uses execution graphs for
backtracking on both scheduling and symbolic constraints, and offloads all manipulation
of symbolic expressions to the underlying language’s runtime. ConDpor significantly
outperforms DPOR approaches that explicitly enumerate the values of a data domain (even
with that domain is small), and can verify challenging concurrent data structures.
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A Appendices

In this section all the data concerned in measuring time has second unit and all the data
concerened with measuring maximum heap memory usage has megabyte unit. In all tables,
"Ex." refers to the total number of explored executions, "C. Ex." refers to the total number
of completed executions, "B. Ex." refers to the total number of blocked executions, "Time"
refers to the total amount of CPU time consumed, and "Mem." refers to the maximum size
of heap memory usage. For all plots, the time domain is presented on a logarithmic scale.

A.1 Detailed Evaluation of the synthetic benchmarks

Here, we provide a comprehensive evaluation of the synthetic benchmarks. For this evaluation,
we utilized several benchmarks from the SV-COMP suite, along with some handcrafted
synthetic benchmarks. As depicted in Table 2, we executed these benchmarks on ConDpor
and ExEn with a bounded data domain of {0, 1, 2}. For each instance, we assessed both
approaches by increasing the size of the program until the first timeout occurred.

A.2 Detailed Evaluation of the data-independent benchmarks

We provide a comprehensive evaluation of our selected fully data-independent benchmarks.
Figures 7 and 8 illustrate the CPU time consumption of each benchmark for both "100-0"
and "50-50" workloads.
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Figure 7 Detailed comparison on fully data-independent benchmarks with insertion workload
benchmarks over CPU time comparison in ConDpor and ExEn

All details regarding the number of executions, CPU time consumption, and maximum
heap memory usage are depicted in Tables 3 and 4 for both workloads across our selected
data-independent benchmarks.
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Figure 8 Detailed comparison on fully data-independent benchmarks with insertion-deletion
workload benchmarks over CPU time comparison in ConDpor and ExEn

A.3 Detailed Evaluation of the Data-dependent Data Structure
benchmarks

Table 5 highlights the details related to the number of executions explored by ConDpor
and ExEn over a finite data domain, total CPU time, and maximum heap memory usage.

To specify the portion of CPU time usage by the DPOR procedure of ConDpor and
the portion of CPU time usage by the concolic procedure of ConDpor, we provide Table 6.
Additionally, note that since we added more instrumentation to profile in a more detailed
manner, we may have recorded a slight overhead for each instance.

A.4 Detailed Evaluation of the Nondeterminism-based Data Structures
Benchmarks

Table 7 empirically supports our claim in the motivating example section 2.1. We have
provided three instances of timestamp-based stacks for this evaluation. First, the timestamp
generator assigns a symbolic integer-typed timestamp to each element pushed, based on the
JMC symbolic API. The second instance uses an atomic integer and a get-and-increment
operation to generate a new timestamp. The last instance is implemented based on the exact
algorithm referenced in [26], which generates an interval for each timestamp request. We
evaluated ConDpor over the first variant and Vanilla DPOR over the others. As DPOR
(Atomic) explores fewer executions compared to DPOR (Interval), it has explored more
executions than ConDpor.

Table 8 highlights the evaluation details of the lock-based array-based bounded priority
queue (LPQueue) and the elimination back-off stack (EBStack). In the table, E stands for
the total number of executions, CE for completed executions, BE for blocked executions, T
for total CPU time usage, M for maximum heap memory usage, DP for the DPOR procedure
portion of CPU time usage, and CO for the concolic procedure portion of CPU time usage.
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As depicted in the table, the number of executions for both approaches is the same in the
evaluation of the LPQueue. The reason is that each thread must pick a random index from
the array, and ConDpor, using it’s concolic engine, enumerates all possible values within
the range of the array. Thus, it explores the same number of executions as the exhaustive
enumeration approach.

However, the interesting insight from this evaluation is that, even when calling SMT
solvers to enumerate all possible values, the CPU time usage does not increase noticeably
compare to ExEn approach. This result demonstrates how effectively ConDpor utilizes
concolic execution in resolving highly data-dependent data structures.

The other benchmark, EBStack, is also similar to the LPQueue benchmark in using
an array with symbolic indices. However, in EBStack, a thread only needs to access a
symbolic index of an array when it encounters a conflict. Trivially, ConDpor will also
explore executions where there is no conflict between threads, meaning the solver will not
be involved in such cases at all. On the other hand, ExEn first enumerates all possible
arrangements and then explores all possible executions for each arrangement. This leads
ExEn to explore redundant executions. Overall, this could result in ConDpor exploring
fewer executions compared to ExEn for data structures with more relaxed data-dependency
level.

A.5 Comparison Betwwen ConDpor and PorSeOver SV-COMP
Benchmarks

To empirically compare ConDpor and PorSe, and demonstrate ConDpor’s superiority in
optimality, we evaluated both algorithms on SV-COMP benchmarks. To enable compatibility
with our implementation, we transpiled the SV-COMP benchmarks into Java. Table 9
presents the number of completed execution traces explored by each approach across the
benchmark set.
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Table 2 Complete comparison of synthetic benchmarks over ConDpor and ExEn

Program(SIZE) ExEn (Data Domain = {0,1,2}) ConDpor (Unbounded Data Domain)

Ex. C. Ex. B. Ex. Time Mem. Ex. C. Ex. B. Ex. Time Mem.

SVQueue1(1) 18 6 12 0.12 70 4 2 2 0.12 66
SVQueue1(2) 54 18 36 0.4 72 4 2 2 0.13 72
SVQueue1(3) 162 54 108 1.1 72 4 2 2 0.14 73
SVQueue1(4) 486 162 324 2.6 73 4 2 2 0.17 73
SVQueue1(5) 1458 486 972 8.9 75 4 2 2 0.19 73
SVQueue1(6) 4374 1458 2916 31 72 4 2 2 0.19 67
SVQueue1(7) 13122 4374 8748 112 71 4 2 2 0.2 69
SVQueue1(8) 39366 13122 26244 365 73 4 2 2 0.2 77
SVQueue1(9) 118098 39366 78732 1743 73 4 2 2 0.2 71
SVQueue1(10) � � � � � 4 2 2 0.21 70
SVQueue2(1) 18 6 12 0.13 70 6 2 4 0.13 68
SVQueue2(2) 1242 54 1188 4.6 79 138 6 132 0.6 70
SVQueue2(3) 92556 540 92016 398 108 3428 20 3408 13 100
SVQueue2(4) � � � � � 86708 70 86638 530 118
SVQueue3(1) 12 6 6 0.1 67 10 5 5 0.1 65
SVQueue3(2) 144 54 90 0.6 70 18 8 10 0.25 70
SVQueue3(3) 1377 423 954 6 73 64 24 40 0.5 71
SVQueue3(4) 10854 2826 8028 59 85 190 63 127 1.2 79
SVQueue3(5) 75735 17703 58032 538 91 501 154 347 3 85
SVQueue3(6) 490050 107748 382302 4126 125 1226 361 865 9 90
SVQueue3(7) � � � � � 2865 824 2041 27 100
SVQueue3(8) � � � � � 6506 1847 4659 70 130
SVQueue3(9) � � � � � 14505 4086 10419 175 158
SVStack1(1) 10 2 8 0.1 70 4 2 2 0.1 71
SVStack1(2) 105 24 81 0.5 72 16 6 10 0.2 71
SVStack1(3) 1566 540 1026 7 73 58 20 38 0.5 71
SVStack1(4) 16848 5670 11178 108 75 208 70 138 1.5 85
SVStack1(5) 183222 61236 121986 1481 126 754 252 502 5.5 108
SVStack1(6) � � � � � 2770 924 1846 26 131
SVStack1(7) � � � � � 10294 3432 6862 112 148
SVStack2(1) 10 2 8 0.1 73 4 2 2 0.2 75
SVStack2(2) 99 20 79 0.4 74 15 5 10 0.2 79
SVStack2(3) 1296 378 918 5.7 82 48 14 34 0.5 85
SVStack2(4) 11988 3402 8586 68 85 148 42 106 1.5 99
SVStack2(5) 112266 32076 80190 932 115 462 132 330 3.6 123
SVStack2(6) � � � � � 1481 429 1052 14 123
SVStack2(7) � � � � � 4876 1430 3446 54 153
SVStack2(8) � � � � � 16422 4862 11560 213 172
Counter1(2) 36 18 18 0.2 61 16 8 8 0.27 76
Counter1(3) 567 162 405 1.8 61 168 48 120 1.1 76
Counter1(4) 11988 1944 10044 32 70 2368 384 1984 8.8 78
Counter1(5) 317115 29160 287955 1044 100 41760 3840 37920 217 90
Counter1(6) � � � � � 883584 46080 837504 5540 200
Counter2(2) 24 14 10 0.19 70 10 6 4 0.17 65
Counter2(3) 261 90 171 1.1 71 66 24 42 0.63 72
Counter2(4) 3740 744 2996 11 136 560 120 440 2.3 133
Counter2(5) 66465 7560 58905 215 180 5770 720 5050 25 140
Counter2(6) 1411770 91440 1320330 6368 200 69852 5040 64812 403 155
Counter2(7) � � � � � 970886 40320 930566 6929 220
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Table 3 Complete comparison of data-independent benchmarks with "100-0" workload

Program(SIZE) Vanilla DPOR ConDpor

Ex. C. Ex. B. Ex. Time Mem. Ex. C. Ex. B. Ex. Time Mem.

LBQueue(1) 1 1 0 0.02 67 1 1 0 0.09 69
LBQueue(2) 4 2 2 0.04 51 4 2 2 0.1 63
LBQueue(3) 21 6 15 0.1 64 21 6 15 0.2 60
LBQueue(4) 148 24 124 0.5 74 148 24 124 0.6 75
LBQueue(5) 1305 120 1185 4 160 1305 120 1185 4 165
LBQueue(6) 13806 720 13086 68 148 13806 720 13086 69 150
LBQueue(7) 170401 5040 165361 1056 204 170401 5040 165361 1051 195
HWQueue(1) 1 1 0 0.02 77 1 1 0 0.1 73
HWQueue(2) 4 2 2 0.04 73 4 2 2 0.1 70
HWQueue(3) 21 6 15 0.1 63 21 6 15 0.2 67
HWQueue(4) 148 24 124 0.5 68 148 24 124 2 72
HWQueue(5) 1305 120 1185 4 72 1305 120 1185 4 76
HWQueue(6) 13806 720 13086 61 74 13806 720 13086 65 74
HWQueue(7) 170401 5040 165361 906 190 170401 5040 165361 1054 192
UBQueue(1) 1 1 0 0.02 59 1 1 0 0.1 62
UBQueue(2) 4 2 2 0.05 75 4 2 2 0.1 65
UBQueue(3) 21 6 15 0.1 57 21 6 15 0.2 62
UBQueue(4) 148 24 124 0.5 73 148 24 124 0.6 74
UBQueue(5) 1305 120 1185 3 150 1305 120 1185 3 150
UBQueue(6) 13806 720 13086 66 74 13806 720 13086 61 77
UBQueue(7) 170401 5040 165361 1013 200 170401 5040 165361 1011 194
MSQueue(1) 1 1 0 0.03 67 1 1 0 0.1 65
MSQueue(2) 70 24 46 0.3 69 70 24 46 0.4 72
MSQueue(3) 49641 9432 40209 277 143 49641 9432 40209 292 145
AGMStack(1) 1 1 0 0.02 75 1 1 0 0 85
AGMStack(2) 10 4 6 0.06 82 10 4 6 0.1 89
AGMStack(3) 177 36 141 0.5 87 177 36 141 0.6 85
AGMStack(4) 5260 576 4684 12 170 5260 576 4684 14 181
AGMStack(5) 239625 14400 225225 906 203 239625 14400 225225 1001 210
TreiStack(1) 1 1 0 0.02 88 1 1 0 0.02 82
TreiStack(2) 16 6 10 0.1 74 16 6 10 0.09 75
TreiStack(3) 474 90 384 1.4 84 474 90 384 1.2 88
TreiStack(4) 25148 2520 22628 94 157 25148 2520 22628 99 173
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Table 4 Complete comparison of data-independent benchmarks with "50-50" workload

Program(SIZE) Vanilla DPOR ConDpor

Ex. C. Ex. B. Ex. Time Mem. Ex. C. Ex. B. Ex. Time Mem.

LBQueue(1,1) 4 2 2 0.05 76 4 2 2 0.16 75
LBQueue(2,1) 21 6 15 0.12 81 21 6 15 0.23 84
LBQueue(2,2) 148 24 124 0.54 107 148 24 124 0.66 111
LBQueue(3,2) 1305 120 1185 4 157 1305 120 1185 4.5 158
LBQueue(3,3) 13806 720 13086 64 181 13806 720 13086 51 181
LBQueue(4,3) 170401 5040 165361 1020 185 170401 5040 165361 1024 205
HWQueue(1,1) 7 3 4 0.06 67 7 3 4 0.2 54
HWQueue(2,1) 57 12 45 0.31 108 57 12 45 0.4 74
HWQueue(2,2) 1636 168 1468 5.1 137 1636 168 1468 4.9 129
HWQueue(3,2) 40887 1704 39183 225 146 40887 1704 39183 204 155
UBQueue(1,1) 2 2 0 0.03 62 2 2 0 0.11 75
UBQueue(2,1) 8 4 4 0.07 62 8 4 4 0.14 84
UBQueue(2,2) 44 16 28 0.2 66 44 16 28 0.29 76
UBQueue(3,2) 246 48 198 0.8 81 246 48 198 0.99 104
UBQueue(3,3) 1962 288 1674 34 144 1962 288 1674 6.9 175
UBQueue(4,3) 14664 1152 13512 54 188 14664 1152 13512 71 177
UBQueue(4,4) 158336 9216 149120 937 205 158336 9216 149120 928 198
MSQueue(1,1) 34 12 22 0.07 66 34 12 22 0.1 70
MSQueue(2,1) 750 136 614 2 74 750 136 614 2 75
MSQueue(2,2) 28968 2688 26280 138 153 28968 2688 26280 134 152
AGMStack(1,1) 7 3 4 0.05 61 7 3 4 0.17 67
AGMStack(2,1) 183 38 145 0.58 70 183 38 145 0.69 87
AGMStack(2,2) 8848 924 7924 29 166 8848 924 7924 24 163
AGMStack(3,2) 2264139 99924 2164215 10761 277 2264139 99924 2164215 10744 275
TreiStack(1,1) 7 3 4 0.06 70 7 3 4 0.1 72
TreiStack(2,1) 173 40 133 0.5 73 173 40 133 0.7 79
TreiStack(2,2) 3168 452 2716 8 164 3168 452 2716 9 166
TreiStack(3,2) 293442 22536 270906 1627 184 293442 22536 270906 1622 182
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Table 5 Complete comparison of data-dependent benchmarks over ConDpor and ExEn

Program(SIZE) ConDpor (Unbounded Data Domain) ExEn (Data Domain = {0,1,2})

Ex. C. Ex. B. Ex. Time Mem. Ex. C. Ex. B. Ex. Time Mem.

CoarseList(1) 1 1 0 0.11 67 3 3 0 0.04 70
CoarseList(2) 6 4 2 0.14 72 36 18 18 0.25 75
CoarseList(3) 63 36 27 0.47 70 567 162 405 2.1 73
CoarseList(4) 1108 576 532 5 88 11988 1944 10044 38 119
CoarseList(5) 29485 14400 15085 199 123 317115 29160 287955 1332 154
CoarseList(6) 1109046 518400 590646 10511 242 � � � � �

CoarseList(1,1) 4 2 2 0.17 70 12 6 6 0.08 61
CoarseList(2,1) 32 11 21 0.29 68 189 54 135 0.69 68
CoarseList(2,2) 224 42 182 1.2 76 1332 216 1116 41 85
CoarseList(3,2) 4097 582 3515 21 120 35235 3240 31995 137 161
CoarseList(3,3) 43476 3264 40212 267 125 372762 19440 353322 1841 188
CoarseList(4,3) 1431994 85254 1346740 12418 300 � � � � �

FineList(1) 1 1 0 0.11 71 3 3 0 0.05 64
FineList(2) 6 4 2 0.17 81 36 18 18 0.21 82
FineList(3) 69 36 33 0.56 81 621 162 459 2.83 68
FineList(4) 1468 576 892 8 105 16356 1944 14412 70 107
FineList(5) 57385 14400 42985 478 125 611535 29160 582375 3221 150
FineList(1,1) 4 2 2 0.15 78 12 6 6 0.09 79
FineList(2,1) 35 11 24 0.4 68 198 54 144 0.94 85
FineList(2,2) 276 42 234 1.6 76 1488 216 1272 5.6 82
FineList(3,2) 7411 582 6829 51 83 50625 3240 47385 222 142
FineList(3,3) 106092 3264 102828 941 142 626142 19440 606702 4378 171
OptList(1) 1 1 0 0.11 80 3 3 0 0.06 77
OptList(2) 14 8 6 0.25 76 72 36 36 0.41 73
OptList(3) 930 402 528 5 87 4893 1554 3339 18 93
OptList(4) 287900 108768 179132 3091 136 � � � � �

OptList(1,1) 6 3 3 0.17 77 18 9 9 0.13 77
OptList(2,1) 251 80 171 1.7 86 1209 393 816 5 75
OptList(2,2) 14617 3065 11552 135 123 68382 15594 52788 464 80
LazyList(1) 1 1 0 0.11 77 3 3 0 0.05 87
LazyList(2) 14 8 6 0.21 80 72 36 36 0.37 83
LazyList(3) 930 402 528 4 93 4893 1554 3339 19 88
LazyList(4) 284324 179132 105192 2756 136 1029888 213096 816792 6247 116
LazyList(1,1) 6 3 3 0.16 65 18 9 9 0.14 86
LazyList(2,1) 251 80 171 1.6 74 1209 393 816 5 82
LazyList(2,2) 14617 3065 11552 118 112 68382 15594 52788 491 152
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Table 6 CPU time profiling of the execution of the ConDpor over data-dependent bench-
marks(consider that by adding a detailed profiler we have some overhead on the total execution
time)

Program(SIZE) ConDpor (Unbounded Data Domain)

Ex. Time DPOR Concolic

CoarseList(1) 1 0.13 0.094 0.037
CoarseList(2) 6 0.31 0.16 0.15
CoarseList(3) 63 0.55 0.39 0.16
CoarseList(4) 1108 6.22 5.11 1.10
CoarseList(5) 29485 202 171 31
CoarseList(6) 1109046 10132 8859 1273
CoarseList(1,1) 4 0.15 0.07 0.08
CoarseList(2,1) 32 0.35 0.24 0.21
CoarseList(2,2) 224 1.39 1.17 0.22
CoarseList(3,2) 4097 24.56 22.08 2.47
CoarseList(3,3) 43476 309.68 286.68 23
CoarseList(4,3) 1431994 12901 12061 840
FineList(1) 1 0.10 0.03 0.07
FineList(2) 6 0.17 0.09 0.08
FineList(3) 69 0.61 0.45 0.16
FineList(4) 1468 9.28 8.1 1.18
FineList(5) 57385 512 465 47
FineList(1,1) 4 0.17 0.09 0.08
FineList(2,1) 35 0.40 0.26 0.14
FineList(2,2) 276 1.7 1.5 0.2
FineList(3,2) 7411 55 51.3 3.7
FineList(3,3) 106092 907 860 47
OptList(1) 1 0.16 0.04 0.12
OptList(2) 14 0.23 0.14 0.09
OptList(3) 930 5.7 5 0.7
OptList(4) 287900 3077 2773 304
OptList(1,1) 6 0.18 0.10 0.08
OptList(2,1) 251 1.7 1.4 0.3
OptList(2,2) 14617 137 128 9
LazyList(1) 1 0.13 0.04 0.09
LazyList(2) 14 0.23 0.12 0.11
LazyList(3) 930 4.7 4 0.7
LazyList(4) 284324 2615 2359 256
LazyList(1,1) 6 0.17 0.09 0.08
LazyList(2,1) 251 1.6 1.4 0.2
LazyList(2,2) 14617 122 114 8
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Table 7 Comparing Time stamped stack implementations with different modelling using -
ConDpor and atomic integer with vanilla DPOR and Interval based with Vanilla DPOR

Program(SIZE) ConDpor DPOR (Atomic) DPOR (Interval)

Exe. T. DPOR Concolic Mem. Exe. T. Mem Exe. T. Mem.

TSStack(1,1) 10 0.21 0.10 0.11 84 12 0.10 84 84 0.95 60
TSStack(2,1) 72 0.71 0.16 0.15 84 170 0.88 101 28949 226 133
TSStack(2,2) 35078 270 248 22 118 68406 474 140 � � �

Table 8 Comparison of non-determinism based data structures between ConDpor and ExEn

Program(SIZE) ExEn ConDpor (unbounded)

E CE BE T M E CE BE T DP CO M

LPQueue(1) 1 1 0 0.023 75 1 1 0 0.1 0.03 0.07 62
LPQueue(2) 10 6 4 0.11 70 10 6 4 0.19 0.09 0.1 60
LPQueue(3) 141 60 81 0.76 71 141 60 81 0.74 0.55 0.18 75
LPQueue(4) 2776 840 1936 13.3 77 2776 840 1936 11 9.4 1.6 102
LPQueue(5) 70045 15120 54925 375 129 70045 15120 54925 397 348 49 123
LPQueue(1,1) 4 2 2 0.05 74 4 2 2 0.13 0.05 0.08 75
LPQueue(2,1) 62 18 44 0.2 70 62 18 44 0.46 0.34 0.12 76
LPQueue(2,2) 900 116 784 2.8 86 900 116 784 4 3.6 0.4 97
LPQueue(3,2) 51035 3012 48023 228 197 51035 3012 48023 303 282 21 140
EBStack(1) 1 1 0 0.03 84 1 1 0 0.12 0.05 0.07 87
EBStack(2) 64 24 40 0.35 87 20 10 10 0.27 0.19 0.8 90
EBStack(3) 35154 9882 25272 209 133 8646 2958 5688 64 60 4 130
EBStack(1,1) 7 3 4 0.1 70 7 3 4 0.19 0.1 0.09 71
EBStack(2,1) 4696 1424 3272 24 115 1950 648 1302 10 9 1 123
EBStack(2,2) � � � � � 755542 140944 614598 6705 6377 328 221

ConDpor/Execs PorSe/Execs

BigShotS 1 4
BigShotS2 1 4
Lazy01 1 13
BigShotP 3 8
FibBench1 5922 9855
FibBench2 1368 10 222
Queue_ok 2 6
Sigma 2 16 685
Singleton 4 62
Singleton_wup 24 62
Stack-1 252 441

Table 9 ConDpor performs better than PorSe
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